Homework \# 2 - SOLUTION

CIVE210 - STATICS

Topics: Equilibrium of a Particle (Chapter 3)
Textbook: \quad Engineering Mechanics, by R.C. Hibbeler Pearson, $12^{\text {th }}$ Edition

Problems:

Chapter 3: \quad Problems 3-5, 3-9, 3-14, 3-20, 3-22
Problems 3-30, 3-40, 3-42 (2-D Force System)
Problems 3-47, 3-56, 3-66 (3-D Force System)

3-5. The members of a truss are connected to the gusset plate. If the forces are concurrent at point O, determine the magnitudes of \mathbf{F} and \mathbf{T} for equilibrium. Take $\theta=30^{\circ}$

$\xrightarrow{*} \Sigma F_{x}=0 ; \quad-T \cos 30^{\circ}+8+5 \sin 45^{\circ}=0$

$$
T=13.32=13.3 \mathrm{kN} \quad \text { Ans }
$$

$+\uparrow \Sigma F_{\mathbf{r}}=0 ; \quad F-13.32 \sin 30^{\circ}-5 \cos 45^{\circ}=0$

$F=10.2 \mathrm{kN} \quad$ Ans

3-9. If members $A C$ and $A B$ can support a maximum tension of 300 lb and 250 lb , respectively, determine the largest weight of the crate that can be safely supported.

Equations of Equilibrium: Applying the equations of equilibrium along the x and y axes to the free - body diagram in Fig. (a),

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; & \\
F_{A B} \cos 45^{\circ}-F_{A C}\left(\frac{3}{5}\right)=0 \tag{2}\\
+\uparrow \Sigma F_{y}=0 & \\
F_{A B} \sin 45^{\circ}+F_{A C}\left(\frac{4}{5}\right)-W=0
\end{array}
$$

Assuming that $\operatorname{rod} A B$ will break first, $F_{A B}=250 \mathrm{lb}$. Substituting this value into Eqs. (1) and (2),

$$
\begin{aligned}
& F_{A C}=294.63 \mathrm{lb} \\
& W=412 \mathrm{lb}
\end{aligned}
$$

Ans.

Since $F_{A C}=294.63 \mathrm{lb}<300 \mathrm{lb}$, rod $A C$ will not break as assumed.

(a)

3-14. Determine the stretch in springs $A C$ and $A B$ for equilibrium of the $2-\mathrm{kg}$ block. The springs are shown in the equilibrium position.

$$
\begin{aligned}
& F_{A D}=2(9.81)=x_{A D}(40) \\
& x_{A D}=0.4905 \mathrm{~m} \\
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad F_{A B}\left(\frac{4}{5}\right)-F_{A C}\left(\frac{1}{\sqrt{2}}\right)=0 \\
& +\uparrow \Sigma F_{y}=0 ; \quad F_{A C}\left(\frac{1}{\sqrt{2}}\right)+F_{A B}\left(\frac{3}{5}\right)-2(9.81)=0 \\
& \text { Ans } \\
& \text { 2(9.81)N } \\
& F_{A C}=15.86 \mathrm{~N} \\
& x_{A C}=\frac{15.86}{20}=0.793 \mathrm{~m} \\
& F_{A B}=14.01 \mathrm{~N} \\
& x_{A B}=\frac{14.01}{30}=0.467 \mathrm{~m}
\end{aligned}
$$

3-20. Determine the tension developed in each wire used to support the $50-\mathrm{kg}$ chandelier.

Equations of Equilibrium: First, we will apply the equations of equilibrium along the x and y axes to the free-body diagram of joint D shown in Fig. (a).

$$
\begin{array}{cl}
\stackrel{+}{\rightarrow} \boldsymbol{\Sigma} F_{x}=0 ; & F_{C D} \cos 30^{\circ}-F_{B D} \cos 45^{\circ}=0 \\
+\uparrow \Sigma F_{y}=0 ; & F_{C D} \sin 30^{\circ}+F_{B D} \sin 45^{\circ}-5(9.81)=0 \tag{2}
\end{array}
$$

Solving Eqs. (1) and (2), yields

$$
F_{C D}=359 \mathrm{~N}
$$

$$
F_{B D}=439.77 \mathrm{~N}=440 \mathrm{~N}
$$

Ans.

Using the result $F_{B D}=439.77 \mathrm{~N}$ and applying the equations of equilibrium along the x and y axes to the free-body diagram of joint B shown in Fig. (b).

$$
\begin{array}{ll}
+\uparrow \Sigma F_{y}=0 & F_{A B} \sin 30^{\circ}-439.77 \sin 45^{\circ}=0 \\
& F_{A B}=621.93 \mathrm{~N}=622 \mathrm{~N} \\
+\Sigma F_{x}=0 ; & F_{B C}+439.77 \cos 45^{\circ}-621.93 \cos 30^{\circ}=0 \\
& F_{B C}=228 \mathrm{~N}
\end{array}
$$

3-22. A vertical force $\mathbf{P}=10 \mathrm{lb}$ is applied to the ends of the $2-\mathrm{ft}$ cord $A B$ and spring $A C$. If the spring has an un-stretched length of 2 ft , determine the angle θ for equilibrium. Take $\mathrm{k}=15 \mathrm{lb} / \mathrm{ft}$.

$$
\begin{aligned}
\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; & F_{z} \cos \phi-T \cos \theta=0 \\
+\uparrow \Sigma F_{y}=0 ; & T \sin \theta+F_{z} \sin \phi-10=0
\end{aligned}
$$

(1)
(2)

$s=\sqrt{(4)^{2}+(2)^{2}-2(4)(2) \cos \theta} \frac{2}{2} 2 \sqrt{5-4 \cos \theta}-2$
$F_{s}=k s=2 k(\sqrt{5-4 \cos \theta}-1)$
From Eq. (1): $\quad T=F_{1}\left(\frac{\cos \phi}{\cos \theta}\right)$
$T=2 k(\sqrt{5-4 \cos \theta}-1)\left(\frac{2-\cos \theta}{\sqrt{5-4 \cos \theta}}\right)\left(\frac{1}{\cos \theta}\right)$
From Eq. (2) :
$\frac{2 k(\sqrt{5-4 \cos \theta}-1)(2-\cos \theta)}{\sqrt{5-4 \cos \theta}} \tan \theta+\frac{2 k(\sqrt{5-4 \cos \theta}-1) 2 \sin \theta}{2 \sqrt{5-4 \cos \theta}}=10$
$\frac{(\sqrt{5-4 \cos \theta}-1)}{\sqrt{5-4 \cos \theta}}(2 \tan \theta-\sin \theta+\sin \theta)=\frac{10}{2 k}$
$\frac{\tan \theta(\sqrt{5-4 \cos \theta}-1)}{\sqrt{5-4 \cos \theta}}=\frac{10}{4 k}$
Set $k=15 \mathrm{lb} / \mathrm{t}$
Solving for θ by trial and error,
$\theta=35.0^{\circ}$
Ans

3-30. The springs on the rope assembly are originally un-stretched when $\theta=0$. Determine the tension in each rope when $\mathbf{F}=90 \mathrm{lb}$. Neglect the size of the pulleys at B and D.

$l=\frac{2}{\cos \theta}$
$T=k x=k\left(l-b_{0}\right)=30\left(\frac{2}{\cos \theta}-2\right)=60\left(\frac{1}{\cos \theta}-1\right)$
(1)
$+\uparrow \Sigma F,=0 ; \quad 2 T \sin \theta-90=0$
Substituting Eq.(1) into (2) yields:
$120(\tan \theta-\sin \theta)-90=0$
$\operatorname{man} \theta-\sin \theta=0.75$
By trial and error :

$\theta=57.957^{\circ}$

From Eq.(1),

$$
T=60\left(\frac{1}{\cos 57.957^{\circ}}-1\right)=53.1 \mathrm{lb}
$$

3-40. The spring has a stiffness of $\mathrm{k}=800 \mathrm{~N} / \mathrm{m}$ and an un-stretched length of 200 mm . Determine the force in cables $B C$ and $B D$ when the spring is held in the position shown.

The Force in The Spring: The spring streches $s=1-l_{0}=0.5-0.2$ $=0.3 \mathrm{~m}$. Applying Eq. $3-2$, we have

$$
F_{t p}=k s=800(0.3)=240 \mathrm{~N}
$$

Equations of Equilibrium :

$$
\begin{array}{r}
\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; \quad F_{B C} \cos 45^{\circ}+F_{B D}\left(\frac{4}{5}\right)-240=0 \\
0.7071 F_{B C}+0.8 F_{B D}=240
\end{array}
$$

[1]

$$
\begin{gathered}
+\uparrow \Sigma F_{;}=0 ; \quad F_{B C} \sin 45^{\circ}-F_{B D}\left(\frac{3}{5}\right)=0 \\
F_{B C}=0.8485 F_{B D}
\end{gathered}
$$

[2]

Solving Eqs.[1] and [2] yields,

$$
F_{B D}=171 \mathrm{~N} \quad F_{B C}=145 \mathrm{~N}
$$

Ans

3-42. Determine the mass of each of the two cylinders if they cause a sag of $\mathrm{s}=0.5 \mathrm{~m}$ when suspended from the springs at A and B. Note that $\mathrm{s}=0$ when the cylinders are removed.

$T_{A C}=100 \mathrm{~N} / \mathrm{m}(2.828-2.5)=32.84 \mathrm{~N}$

$+\uparrow \Sigma F_{y}=0 ; \quad 32.84 \sin 45^{\circ}-m(9.81)=0$
$m=2.37 \mathrm{~kg} \quad$ Ans

3-47. The shear leg derrick is used to haul the $200-\mathrm{kg}$ net of fish onto the dock. Determine the compressive force along each of the legs $A B$ and $C B$ and the tension in the winch cable $D B$. Assume the force in each leg acts along its axis.

$$
\begin{aligned}
F_{A B} & =F_{A S}\left(-\frac{2}{6} 1+\frac{4}{6} J+\frac{4}{6} k\right) \\
& =-0.3333 F_{A B} I+0.6667 F_{A S} J+0.6667 F_{A B} \mathrm{t}
\end{aligned}
$$

$$
F_{C I}=F_{C I}\left(\frac{2}{6} I+\frac{4}{6} J+\frac{4}{6} k\right)
$$

$=0.3333 F_{C B} I+0.6667 F_{C B} \mathrm{~J}+0.6667 F_{C B} \mathrm{E}$
$F_{D D}=F_{I D}\left(-\frac{9.6}{10.4} \mathrm{~J}-\frac{4}{10.4} \mathrm{k}\right)$

$$
=-0.9231 F_{J D} \mathrm{~J}-0.3846 F_{B D} \mathbf{k}
$$

$W=-1962 k$
$\Sigma F_{1}=0 ; \quad-0.3333 F_{A B}+0.3333 F_{C B}=0$

$\Sigma F_{J}=0 ; \quad 0.6667 F_{A B}+0.6667 F_{C B}-0.9231 F_{B D}=0$
$\Sigma F_{t}=0 ; \quad 0.6667 F_{A B}+0.6667 F_{C J}-0.3846 F_{I D}-1962=0$
$F_{A I}=2.52 \mathrm{kN} \quad$ Ans
$F_{C I}=2.52 \mathrm{kN} \quad \mathrm{Ams}$
$F_{\mathrm{nd}}=3.64 \mathrm{kN} \quad$ Ans

3-56. The ends of the three cables are attached to a ring at A and to the edge of a uniform $150-\mathrm{kg}$ plate. Determine the tension in each of the cables for equilibrium.

$P=150(9.81) k=1471.5 \mathrm{k}$
$F_{B}=\frac{4}{14} F_{B} i-\frac{6}{14} F_{B} j-\frac{12}{14} F_{B} k$
$F_{C}=-\frac{6}{14} F_{C} i-\frac{4}{14} F_{C} j-\frac{12}{14} F_{C} k$
$F_{D}=-\frac{4}{14} F_{D} i+\frac{6}{14} F_{D} J-\frac{12}{14} F_{D} k$

$\Sigma F_{x}=0 ; \quad \frac{4}{14} F_{B}-\frac{6}{14} F_{C}-\frac{4}{14} F_{D}=0$
$\Sigma F_{y}=0 ; \quad-\frac{6}{14} F_{B}-\frac{4}{14} F_{C}+\frac{6}{14} F_{D}=0$
$\Sigma F_{z}=0 ; \quad-\frac{12}{14} F_{B}-\frac{12}{14} F_{C}-\frac{12}{14} F_{D}+1471.5^{\circ}=0$

$$
F_{B}=858 \mathrm{~N}
$$

Ans

$$
\begin{aligned}
& F_{c}=0 \\
& F_{D}=858 \mathrm{~N}
\end{aligned}
$$

Ans

Ans

3-66. The bucket has a weight of 80 lb and is being hoisted using three springs, each having an unstretched length of lo $=1.5 \mathrm{ft}$ and stiffness of $\mathrm{k}=50 \mathrm{lb} / \mathrm{ft}$. Determine the vertical distance d from the rim to point A for equilibrium.

$\Sigma F_{t}=0 ;$

$$
\begin{aligned}
& 80-\left(\frac{3 d}{\sqrt{d^{2}+(1.5)^{2}}}\right) F=0 \\
& 80-\frac{3 d}{\sqrt{d^{2}+(1.5)^{2}}}\left[50\left(\sqrt{d^{2}+(1.5)^{2}}-1.5\right)\right]=0 \\
& \frac{d}{\sqrt{d^{2}+(1.5)^{2}}}\left(\sqrt{d^{2}+(1.5)^{2}}-1.5\right)=0.5333 \\
& d \sqrt{d^{2}+(1.5)^{2}}-1.5 d=0.5333 \sqrt{d^{2}+(1.5)^{2}} \\
& \sqrt{d^{2}+(1.5)^{2}}(d-0.5333)=1.5 d \\
& {\left[d^{2}+(1.5)^{2}\right]\left[d^{2}-2 d(0.5333)+(0.5333)^{2}\right] }=(1.5)^{2} d^{2} \\
& d^{4}-1.067 d^{3}+0.284 d^{2}-2.4 d+0.64=0 \\
& d=1.64 \mathrm{At} \quad \mathrm{Ans}
\end{aligned}
$$

